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Interaction algebras of spin models and their relevance for 
disorder solutions 

Hendrik Moraal 
lnstitut f"r theorrtische Physik der Universit;it zu Koln, Zipicher Strasse 77. D-SO937 Koln, 
Germany 

Received 10 Augna 1994 

Abstract. The interaction algebra of a discrete classical spin model with transitin: symmetry 
group is generated by the s independent matrices corresponding to its set of minimal edge- 
transitive graphs If this algebra is non-AkIian, its centre is at least the Po- model intemction 
algebra For a spin model on the square lattice with four different interactions, the e:xistence of 
an Abelian intemction algebra implies the existence of four 3s-dimensional disorder solutions. 
In the non-Abdian case, there are at least four (2s + Z)-dimensional disorder solutions. As 
examples, the Pous.~and Ashkin-Teller~models (Abelian) and the F(6)-model (non-Abelian) 
are discussed. The possibility of an expansion around a disorder solution in terms of a class 
of subgraphs of~the  shadow lattice is indicated. Inversion relations for spin models on the 
checker-board lattice are derived using am explicit form for the inverse of the transfer mamix. 

1. Introduction 

The simplest way to consider a statistical-mechanical model on a graph or lattice is obtained 
by assuming that all the interactions are equal. If this requirement is relaxed, the problem 
quickly becomes intractable, unless the number of different interactions is kept small. This 
is, for example, the case for the triangular and square lattices, which are such that their 
duals are bipartite. It is, therefore, possible to select half of the faces of these lattices and 
define three (triangular case) or four (square case) different interactions around each face. In 
figure l(a) this basic face for the square lattice is shown, together with the numeration of the 
four interactions adopted in this article. Figure I@) shows the basic face of the triangular 
lattice; this may be considered as a special case of the square lattice with interaction 3 
(figure l (a))  replaced by the unit mahix (the limit of infinitely strong attraction). Therefore, 
onIy the square-lattice case (also called the checker-board lattice with these interactions) 'is 
considered in what follows. 

For the Potts mode1,on the triangular lattice, it has been shown [l], that there are three 
two-dimensional disorder solutions in the three-dimensional thermodynamic state space. For 
such a disorder solution, all triangles are frustrated [2], so that the partition hnction has a 
very simple form. This result has been generalized to the square lattice [3], in which there 
are four three-dimensional disorder solutions in the four-dimensional state space. Disorder 
solutions have also been found for other types of models, see, e.g., [4-81 for the earliest 
references. Such disorder solutions have been found using a variety of methods, of which 
the 'crystal-gowth' method is the most prominent. In the present article, it is shown that for 
discrete classical spin models, the actual determination of the disorder solutions j s  almost 
trivial. 
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Figure 1. ( U )  Basic square with four interactions of the checker-board lattice. (b) Basic triangle 
with three interactions of the triangular lattice. (c) Pari of the checker-board lattice with the 
hatched squares as in (a).  (d )  Part of the shadow lattice corresponding to (c). 

A general spin model with transitive symmetry group G and M states will have s 
independent energy parameters, or Boltzmann factors, corresponding to the s minimal edge- 
transitive graphs associated with G (see also section 2), so that the thermodynamic state 
space for such a model on the checker-board lattice is 4s-dimensional. The present article 
answers the question as to the existence and dimensionality of disorder solutions in this 
general case as well as some related questions. The paper is organized as follows: in 
section 2, general discrete classical spin models are discussed. The interaction algebra 
for such a model is defined and the conditions under which this algebra is commutative 
(Abelian) are given. The centres of non-Abelian interaction algebras are discussed. In 
section 3, the basic requirement for the existence of a disorder solution is derived. It is 
shown that there are four 3s-dimensional disorder solutions in the state space in the Abelian 
case, whereas there are again at least four (2s + 2)-dimensional order solutions in the 
non-commutative case. As examples, the groups S ( M )  (M-state Potts model), S(2) @ S(2) 
(Ashkin-Teller model) and F ( 6 )  (the model with the minimal number of states having anon- 
Abelian interaction algebra) are discussed. Since the disorder solutions are generalizations 
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of the high-temperature limit, an expansion around a disorder solution is akin to a high- 
temperature expansion. Section 4 is devoted to a short discussion of expansions around 
disorder~solutions in terms of connected section graphs of &e shadow lattice, In section 5, 
a discussion of the ‘inversion relations’ L3.9-121, which have been conjectured to exist for 
the Pons model on the checker-board lattice, is given for the general case. 

2. Spin models and their interaction algebras 

A classical discrete spin model with M possible spin states is completely defined by its 
permissible symmetry group G. Its interaction matrix E(i ,  j ) ,  which is the energy associated 
with an (unordered) pair of interacting spins in states i and j ,  is given by (E( i ,  i )  = 0 for 
all i can be chosen by the transitivity of G) 

where the E,, are arbitrary parameters, each associated with a symmetric matrix M& j ) .  
Mk(i ,  j )  is the incidence matrix of the p p h  Li, obtained from a single (undirected) edge 
by the permutations of the group G. This maxiLmal set of symmetric G-invariant graphs is 
called the maximal interaction of G. If G(Lk) is the automorphism group of the graph Lk, 
then G equals the intersection of all groups of this type 

5 - 
G = n G ( L ~ ) .  (2.2) 

k=l 

This expresses the permissibility of G. For more details on these matters, see the book 
I131; extensions to models with infinitely many states are discussed in [14]. 

The algebra I ( @ ,  generated by the Mkkatrices, (and the M x M unit mahix) is called 
the interaction algebra of G. It can be shown [13], that this algebra is Abelian if. and only 
if, the representation of G on the M states contains each real irreducible repr<:sentation 
of G either once or not at all. This is certainly the case if G is completely permissible, 
which means that for every pair of different states i and j ,  there is an element g from G 
with g ( i )  = j ,  g ( j )  = i. Complete permissibility implies that all G-invariant matrices are 
necessarily symmetric. For M < 10, evely’spin model with Abelian interaction algebra is 
completely permissible; of the 41 spin models with no more than 10 states, only four have 
non-Abelian interaction algebras [13]. 

Since the graphs Lk are regular, i.e. have equal valency Zk (valency of a vertex equals 
the number of edges emanating from it) at every vertex, the M x M matrix Q(i, j ) ,  with 
all entries equal to 1, commutes with all Mk-matrices: 

QMk = MkQ = ZkQ. (2.3) 

One also has 
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where I is the M x M unit matrix, so that Q E Z(G). The set of matrices in Z(G) which 
commute with all matrices from this algebra called the centre of I(G), therefore contains 
all matrices of the type 

{;+b f o r i = j  
for i # j. A&, j )  = (aZ + be)@, j )  = 

In particular, the centre of Z(G) contains the Boltzmann-factor matrices of the Potts model: 

The general Boltzmann-factor matrix corresponding to equation (2.1) is simply given by 

S2(& j) = exp(-gE(i, j)). (2.7a) 

Property (2.4) and the nature of the Mk(i. j )  as incidence matrices of edge-disjunct graphs 
imply the explicit form: 

~ ( i ,  j) = C w & k ( i .  j )  + a(i, j )  = wk = exp(-gEk) (2.7b) 
k=I 

from which equation (2.4) is obtained by setting all energy parameters (or all wk) equal. 
This shows that the algebra Z ( S ( M ) )  is Abelian ( S ( M )  is the symmetry group of the Potts 
model). 

If the spin-model group G contains a regular Abelian subgroup A ,  then G is completely 
permissible since either A consists only of involutions or the permissibility of G implies 
that G also contains the automorphism of A ,  which maps each element a of A onto its 
inverse a d .  In both cases, G contains for all i, j elements g with g(i) = j ,  g( j )  = i. 
In particular, if A = C ( M ) ,  the cyclic group on M objects, then G contains D ( M ) ,  the 
dihedral group corresponding to C ( M ) ,  and the Boltzmann-factor matrix has the form 

. Q(i, j )  = mli-jl WO = 1. (2.8) 

Z ( D ( M ) )  is again commutative, since all cyclic matrices of the form (2.8) commute. A 
further example is afforded by the Ashkin-Teller model; with group S(2) @ S(2)  and 
Boltzmann-factor matrix 

This is an example of the case in which the Abelian group consists of involutions only. 
As examples of groups with non-Abelian interaction algebras, we now consider the 

groups F ( 2 N ) .  These are isomorphic to the dihedral groups D ( N ) ,  but represented on 2 N  
objects. They are given explicitly by [13] 

F ( 2 N )  = {e ,  g2, g4, . . . , g 2N-2 , ug, ug 3 , . . . , ug Z N - I )  (2.10) 
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where g is a generator of C(2N),  gZN = e and U represents the automorphism of C ( 2 N )  
which maps onto inverses: 

ug”o = g-“ ougbu = ghu  = ug-b. (2.11) 

The maximal interaction of F(2N)  contains, in addition to other graphs, the graphs LI and 
LZ given by 

L I  = {(Zn - 1,2n), n = 1,2, . . . , N )  (2.12) 

which together make up the circle {(n, n+ 11, n = 1 , .  . . , 2 N )  with group D ( 2 N ) ,  of which 
F ( 2 N )  is an index-2 (normal) subgroup. The matrices MI and Mz, corresponding to L1 
and L2, do not commute. For N > 2, 

Lz = {(Zn, 2n + l), n = 1,2,  . . . , A’] 

1 i f i i s o d d a n d j = i + Z  
(M2M,)( i ,  j )  = 1 if i is even and j = i - 2 (2.13~) 

0 otherwise 

1 

, [  0 otherwise. 
(MlMz)( i .  j )  = 1 

if i is odd and j = i - 2 
if i is even and j = i + 2 (2.13b) 

{ 

The sum MlMz + M ~ M I  is again a matrix corresponding to a graph from the maximal 
interaction of F ( 2 N ) .  

For the case N = 3 (M = 6), the Boltzmann-factor mabjx has the explicit form 

R =  (2.14) 

i.e. it is a cyclic matrix, apart from the M I  and MZ parts. The structure of the interaction 
algebra follows as 

MlM2 f M2Mi = M I M ~  + M3Mi = MzM3 + M3M2 = M4 

[MI,  Mzl # 0 [Mi, M31 # 0 [Mz, M31f 0 (2.15) 

MiM4 = M4Mi = Mj f Mk . - - t  = 1,2 ,3  
9 

where j and k are the values from (1 4 3) unequal to i. Since M4 commutes with all 
other matrices, the centre of I (F(6 ) )  consists of all matrices of the form 

Z = UI + bM4 + c(Q - I - M4). (2.16) 

This is exactly the interaction algebra Z(S(3)zS(2)) of the group of the graph corresponding 
to M4, which consists of two triangles, by equation (2.14). 
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3. Disorder solutions 

We consider a finite portion of the checker-board lattice, as in figure l(c), where the hatched 
squares are squares from figure I@). The partition function for free boundary conditions 
can be written symbolically as 

where the product is over all hatched squares and the sum over all vertex variables. The 
quantity M ( i ,  j ,  k,  1) is given as (figure I@)) 

M(i, j ,  k,  I )  = Q(')(i, j)Q(')(i, k)QO)(k, l ) d 4 ) ( I ,  j ) .  (3.2) 

A disorder solution is said to exist for interactions which are such that the partition function 
can be evaluated by summing over the variables in 'layers'; for instance, if one starts at the 
extreme right, the condition 

M ( i ,  j ,  k, I )  = independent of i and j (3.3) 
k.1 

ensures that this process can be iterated. Now the sum over k and 1 simply perfoms a 
matrix product in equation (3.2) SO that the condition of equation (3.3) implies 

(3.4) 

fo = (Q(')s~(~)cz(~))(~, i )  (3.5) 

which is independent of i by the transitivity of G .  If a solution of equation (3.4) exists, 
then the partition function in the thermodynamic limit follows as 

(3.6) 

By starting the summation in one of the (three) other directions, equations similar to (3.4) 
and (3.5) are obtained by a cyclic permutation of the superscripts (1 + 4). 

Obviously, equation (3.4) is (easily) solvable if, and only if, the matrix product 
S2(2)C2(3)Q(4) is again a symmetric matrix. If the group G has an Abelian interaction algebra, 
this is always the case. Moreover, the solutions for Q(') and fo will be symmetric with 
respect to any permutation of the superscripts (2 + 4). Therefore, one obtains the following: 
if Z(G) is Abelian, then there are four 3s-dimensional subspaces of the 4s-dimensional 
thermodynamic state space in which a disorder solution exists. Since the actual evaluation 
of the matrix product is nearly trivial, only two examples (which do not give too unwieldy 
expressions) will be given. 

(i) For the M:state Pot& model, the matrix elements of Q(2)Q0)Q(4) are 

1 + (M - l)(@),0) + w ( ' ) o ( ~ )  + w ( ~ ) o ( ~ ) )  + (M - 1)(M - 2)w(')o(3)aA4) i = j 
(3.74 
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Then fo is given by equation (3 .74,  whereas the off-diagonal elements of Q(l) are equal 
to the ratio of equations ( 3 . 7 ~ )  and (3.7b). This result (and the similar ones obtained by 
summing in the other directions) agrees with the conjecture made in [3]. By setting o3 = 0, 
the triangular lattice result of 111 is recovered. It is easy to see that, for d2), d3) and d4) 
all < 1 (‘ferromagnetic’ regime), U(’ )  > 1 (‘antiferromagnetic’ coupling) follows, so that 
the squares are really frustrated an a disorder solution. 

(ii) For the Ashkin-Teller model with Boltzmann-factor matrices, as in equation (2.9). 
one finds: 

where (U. b)  denotes a pair of different indices from (2  --f 4) ,  whereas (a ,  b ,  c) is a 
permutation of (2  + 4) .  Further, the wy)  are given as 

4 4 
(aj (1) ) -I fo -1 - - m y  + n m y  + ok (01 w, (b) + 5 I c o y ( w p w y  + oy@) (3.9) 

a=2 a=2 (u,b) (o.b.4 , 

where k and 2 :re the values of (1 + 3 )  unequal to j .  The compact form of equations (3.8) 
and (3.9) is due to the fact that the group S(2) €3 S(2) has S(3) as an automorphism group, 
so that all expressions are invariant under permutations of ( 1  -+ 3).  

For models with non-Abelian I (G) ,  equation (3.4) can only be solved if the matrix 
product is symmetric, i.e. if - 

(QW)-I &)QB)QW(Q(Z))-I = ~ ( 3 )  (3.10) 

holds. For a geneneric QQ), this implies that 

~ ( ~ 1  = ( a d 3 )  + Z ) Q ~ )  (3.11) 

must hold, where Z is an element from the centre of I (G) .  Since this centre contains 
(section 2)  at least all M-state Potts-model matrices R,, solvability is guaranteed if 

(3.12) 

holds, where c has to be chosen so that Qc4)(i, i) = 1 is preserved. Since the Poas-model 
matrix still contains an arbitrary parameter, equation (3.12) implies that the disorder solution 
has dimension of at least 2s + 2, since two Boltzmann-factor matrices and three parameters 
are restricted by only one normalization condition. In the special case of F(6), for which 
the centre of the interaction algebra has three dimensions (being equal to ( I (S (3 )  1 S(2), 
section 2), the disorder solutions have dimension 11 (in 16-dimensional state space) since 
equation (3.12) is here replaced by 

.. 
Qc41 = c(uR’’ + bQ,)R(*) 

= c (ud3)  + 611 i- bzM4 + bS(Q - I - M4))CP) (3.13) 

with four parameters restricted by one normalization. An explicit form of the disorder 
solutions for this case will not be given, since it is extremely unwieldy and trivial to derive. 
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4. Expansions around disorder solutions 

The disorder solutions derived in the previous section are analogous to the high-temperature 
limit, since there equation (3.3) for the M ( i ,  j ,  k .  I )  of equation (3.2) is also satisfied. An 
expansion around a disorder solution is, therefore, akin to a high-temperature expansion, see 
e.g., 1141. In the present case, however, some care must be taken, since there are different 
values of the partition function (given by equations (3.5) and (3.6)) on different portions 
of the disorder solution. The expansion is therefore restricted to that subspace of the state 
where 

(4.1) 

holds for a fixed value of fo. For fo > 1, there is always a disorder solution with this fo, 
as follows from equation (3.5). Now in this subspace, M ( i ,  j ,  k, I )  can be written as 

M ( i ,  j ,  k ,  1 )  = fo(1 + g(i ,  j ,  k ,  O)/M2.  (4.2) 

Insertion of this into equation (3.1) for the partition function gives: 

(4.3) 

where n is the number of hatched squares. By the transitivity of the group G of the spin 
model, one has 

Here a, b, c ard any three of the indices i, j ,  k ,  I ,  so that 

Therefore, non-zero terms in an expansion of equation (4.3) must be such that none of the 
g-functions occurring has more than two free vertices. In case one is exactly on a disorder 
solution, the g-functions would have to have, at most, one free vertex, which is not possible 
for free boundary conditions, so here equation (4.3) reduces to equation (3.6). This shows 
once more that the form of equation (4.3) leads to an expansion around a disorder solution. 

The non-zero terms in an expansion of equation (4.3) can be identified with subgraphs 
of the shadow lattice, shown in figure l(d) for the part of the checker-board lattice shown 
in figure I(c). This shadow lattice consists of a vertex for each hatched square; two vertices 
are connected by an edge if, and only if, the corresponding squares have a spin (vertex) 
in common. A non-zero contribution to an expansion of equation (4.3) then consists of a 
number of connected subgraphs of the shadow lattice with the following properties: 

(i) each vertex has valency of at least two; and 
(ii) if two neighbouring vertices of the shadow lattice belong to a graph, then so does 

the edge connecting them. 
These requirements define the class of section graphst of the square lattice (ii) without 

dangling ends (i). The first few connected graphs of this type are listed in figure 2. Standard 

t The shadow lattice and section graphs are defined in [I51 
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methods (e.g. [141) can then be also used to write the logarithm of the partition function as 
a series in these graphs. The evaluation of the contributions of these graphs is much more 
involved than in the high-temperature case [ 141; the contribution of the order-4. graph of 
figure 2 is, for instance, in case there is an Abelian interaction algebra, given by 

p(4) = Tr(R(')R(2)R(3)R(4)) 
(4.6) 

1 + M-2R'"(a, b) = Q(')(a, b)(n%(%('))(a, b)f,-'. 

?&is will not be pursued fuxther here, but reserved for a future publication. 

5. The transfer matrix and its inverse 

In section 3, the disorder solutions are define~d by the requirement that a simple iteration of 
the summation over the spin states in layers is possible. Away from a disorder solution, such 
a summation in layers can formally be achieved by the introduction of a transfer matrix 
connecting different layers. For the checker-board model on a cylinder, such a transfer 
matrix is easily defined: if there are 21 squares around the cylinder, then the matrix 

(iiidices taken modulo 21) is such that if there are 2k squares in the 'horizontal' direction, 
tiien the partition function is 

Z ( k , l )  = e .  T K .  e (5.2) 

where the vector e represents free boundary conditions: 

e(i1,. . . , iu) = 1 for i i ,  i . .  , i21. (5.3) 

On the disorder solution of equation (3.4), equation (3.3) implies that e is an eigenvector 
of T and equation (5'2) reduces to equation (3.6) in the thermodynamic limit. 

The structure of equation (5.1) makes it easy to construct the inverse of the transfer 
matrix: its transpose ( T I ) '  has the same structure as equation (5.1), but with M(i, j, k, 1 )  
replaced by its transposed inverse: 

IT(M)-'I' = T((M-1)'). (5.4) 

Now this inverse of M ( i ,  j, k, 1 )  is easily seen to be given by 

M-'(i ,  j, k, I )  = Qa-'(i, k)d4) - ' , ( j ,  l ) / [Q(')(k,  l ) @ ( i ,  j)] (5.5) 

where Q-'(i, j) is the matrix inverse of Q(i, j). Since the matrix inverse has the same 
seucture (symmehy group) as the original matrix, an inverse Boltzmann matrix can be 
defined by normalization: 

a(i, j )  = ~ - ' ( i ,  j ) / @ ( i .  i). (5.6) 
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Figure 2. The subgraphs of the shadow lattice contributing to an expansion around a disorder 
solution for order < 9. Indicated are the order in the expansion (equal to the number of vertices) 
and the embedding factors. 

(This matrix will, in general, contain non-physical values of the individual Boltzmann 
factors, see below.) With definition (5.6), equation (5.5) can be written as 

M- ' (Q( I ) ,  nw, ~ ( 3 1 ,  ~ $ 4 ) )  = g o ~ ( 1 / ~ 2 ( 3 ) ,  fi(z), 1/n(1), ~ ( 4 ) )  

go = d')-'(i,i)Q[ ( 1 ,  z )  (I/n)(i,j) = I / Q ( ~ ,  j ) .  

(5 .7~)  

(5.76) 

For the Pons model, to which we restrict ourselves in the following, equation (5.6) is 
explicitly given by 

414 . . 
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for i = j 
for i # j I '  -w/ [ l  + ( M  - 2)0] = L, 

fi(i, j )  = (5.W 

This shows that the result gives unphysical (negative) values of the Boltzmann factors. With 
equations (5.8), equations (5.7) can be written as: 

M-l(w(l) w(2),o(3), = goM(l/w(3),5(2),  l /o(l) ,  w )  -(4) (5.9~1) 

- go = h ( w 9 0 ' 4 ' ) .  (5.9b) 

The authors of [3,9, IO] proposed the existence of an 'inversion relation' for the checker- 
board Potts model of the form 

Z(u('), U('), d3), o")Z(l /~(~ ' ,  d'), l/&, d4)) = g t ( e .  e)' (5.10) 

where the second factor is an analytic continuation of the first factor to unphysical values 
of the Boltzmann factors. The above derivation of T-l and equation (5.2) show that this 
analytic continuation can be identified with the naive definition of the second factor based 
on T-' if, and only if, 

( e .  T K  . e)(e. T-' . e) = (e.  e)' (5.11) 

is true. This is certainly the case if e is an eigenvector of T ,  i.e. on a disorder solution. 
Away from such a solution, however, the left-hand side of equation (5.11) is, for large k, 
proportional to 

(&lUX/&llin)k (5.12) 

where h ,  and ) . ~ o  are the eigenvalues of T with maximal and minimal modulus, 
respectively (in the space not orthogonal to e). Therefore, the inversion relation of equation 
(5.10) holds naively only on a disorder solution. It has been shown, however, that equation 
(5.10) holds in the sense of analytic continuation in the whole parameter space [3,11,12]. It 
would be interesting to extend the methods of these authors to check whether the inversion 
relations for other models can also be obtained from the inverse of the transfer matrix, as 
given by equations (5.7). 

In conclusion, it has been shown how the dimension of the centre of the interaction 
algebra Z(G) of a spin model with permissible symmehy group G enters into the dimension 
of the disorder solutions in the thermodynamic state space of this model on the checker- 
board lattice. Expansions around disorder solutions have been indicated in terms of a special 
class of subgraphs of the square lattice (as shadow lattice). It has been suggested that the 
inversion relations for general spin models can be obtained in a naive fashion by calculating 
the inverse of the transfer~matrix, for which a general expression is available. 

Acknowledgment 

The comments of the referees have been helpful in clarifying the presentation of this article. 



890 H Moraal 

References 

[I] Rujan P I984 J. Sfof. Phys. 34 615 
[21 Toulouse G 1975 C a m ”  Pkys. 2 115 
(31 laekeel M T and M L u d  J M 1984 J. Phys, A: Math. Gen. 17 2079 
141 Gibbard R W 1969 Can. J.  P k y .  47 2445 
[SI Stephenson J 1970 J,  Math. Phys. 11 420 
(61 Welbeny T R and Galbnith R 1973 1. Appl. Cryst. 6 87 
171 Verhagen A M W 1976 3. Stat. Phys. 15 219 
[SI Enting I G 1977 1. Phys. C: SolidSrare Phys. 10 1379 
[91 Jaekel M T and Maillard J M 1982 3. Phys. A: Marh Gen 15 2241 

[lo] Jnekel M T and Maillard J M 1983 J.  Phys. A: Mafh. Gen. 16 1975 
I111 Hansel D, Maillard J M, Oitmaa I and Velgakis M J 1987 1. Smr. Phys. 48 69 
[I21 Hansel D and Maillard I M 1987 /nr. 3. Mod. Phys. B 1 145 
[I31 Moraal H 1984 Cfmsical Discrere Spin Models (Berlin: Springer) 
[I41 M o r a  H 1993 Physicu 197A 436 
[I51 Domb C 1974 Phase Tranritionr and Critical Phenomena vol 3, ed C Domb and M S Green (New York 

Academic) 


